3.1765 \(\int \frac{(a+\frac{b}{x})^{3/2}}{\sqrt{x}} \, dx\)

Optimal. Leaf size=69 \[ 2 \sqrt{x} \left (a+\frac{b}{x}\right )^{3/2}-\frac{3 b \sqrt{a+\frac{b}{x}}}{\sqrt{x}}-3 a \sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b}}{\sqrt{x} \sqrt{a+\frac{b}{x}}}\right ) \]

[Out]

(-3*b*Sqrt[a + b/x])/Sqrt[x] + 2*(a + b/x)^(3/2)*Sqrt[x] - 3*a*Sqrt[b]*ArcTanh[Sqrt[b]/(Sqrt[a + b/x]*Sqrt[x])
]

________________________________________________________________________________________

Rubi [A]  time = 0.0350443, antiderivative size = 69, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 17, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.294, Rules used = {337, 277, 195, 217, 206} \[ 2 \sqrt{x} \left (a+\frac{b}{x}\right )^{3/2}-\frac{3 b \sqrt{a+\frac{b}{x}}}{\sqrt{x}}-3 a \sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b}}{\sqrt{x} \sqrt{a+\frac{b}{x}}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(a + b/x)^(3/2)/Sqrt[x],x]

[Out]

(-3*b*Sqrt[a + b/x])/Sqrt[x] + 2*(a + b/x)^(3/2)*Sqrt[x] - 3*a*Sqrt[b]*ArcTanh[Sqrt[b]/(Sqrt[a + b/x]*Sqrt[x])
]

Rule 337

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, -Dist[k/c, Subst[
Int[(a + b/(c^n*x^(k*n)))^p/x^(k*(m + 1) + 1), x], x, 1/(c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && ILtQ[n,
 0] && FractionQ[m]

Rule 277

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^p)/(c*(m +
1)), x] - Dist[(b*n*p)/(c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] &&
IGtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1] &&  !ILtQ[(m + n*p + n + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 195

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^p)/(n*p + 1), x] + Dist[(a*n*p)/(n*p + 1),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\left (a+\frac{b}{x}\right )^{3/2}}{\sqrt{x}} \, dx &=-\left (2 \operatorname{Subst}\left (\int \frac{\left (a+b x^2\right )^{3/2}}{x^2} \, dx,x,\frac{1}{\sqrt{x}}\right )\right )\\ &=2 \left (a+\frac{b}{x}\right )^{3/2} \sqrt{x}-(6 b) \operatorname{Subst}\left (\int \sqrt{a+b x^2} \, dx,x,\frac{1}{\sqrt{x}}\right )\\ &=-\frac{3 b \sqrt{a+\frac{b}{x}}}{\sqrt{x}}+2 \left (a+\frac{b}{x}\right )^{3/2} \sqrt{x}-(3 a b) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x^2}} \, dx,x,\frac{1}{\sqrt{x}}\right )\\ &=-\frac{3 b \sqrt{a+\frac{b}{x}}}{\sqrt{x}}+2 \left (a+\frac{b}{x}\right )^{3/2} \sqrt{x}-(3 a b) \operatorname{Subst}\left (\int \frac{1}{1-b x^2} \, dx,x,\frac{1}{\sqrt{a+\frac{b}{x}} \sqrt{x}}\right )\\ &=-\frac{3 b \sqrt{a+\frac{b}{x}}}{\sqrt{x}}+2 \left (a+\frac{b}{x}\right )^{3/2} \sqrt{x}-3 a \sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b}}{\sqrt{a+\frac{b}{x}} \sqrt{x}}\right )\\ \end{align*}

Mathematica [C]  time = 0.0129486, size = 52, normalized size = 0.75 \[ \frac{2 a \sqrt{x} \sqrt{a+\frac{b}{x}} \, _2F_1\left (-\frac{3}{2},-\frac{1}{2};\frac{1}{2};-\frac{b}{a x}\right )}{\sqrt{\frac{b}{a x}+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b/x)^(3/2)/Sqrt[x],x]

[Out]

(2*a*Sqrt[a + b/x]*Sqrt[x]*Hypergeometric2F1[-3/2, -1/2, 1/2, -(b/(a*x))])/Sqrt[1 + b/(a*x)]

________________________________________________________________________________________

Maple [A]  time = 0.014, size = 70, normalized size = 1. \begin{align*} -{\sqrt{{\frac{ax+b}{x}}} \left ({b}^{{\frac{3}{2}}}\sqrt{ax+b}-2\,xa\sqrt{b}\sqrt{ax+b}+3\,{\it Artanh} \left ({\frac{\sqrt{ax+b}}{\sqrt{b}}} \right ) xab \right ){\frac{1}{\sqrt{x}}}{\frac{1}{\sqrt{ax+b}}}{\frac{1}{\sqrt{b}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b/x)^(3/2)/x^(1/2),x)

[Out]

-((a*x+b)/x)^(1/2)*(b^(3/2)*(a*x+b)^(1/2)-2*x*a*b^(1/2)*(a*x+b)^(1/2)+3*arctanh((a*x+b)^(1/2)/b^(1/2))*x*a*b)/
x^(1/2)/(a*x+b)^(1/2)/b^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x)^(3/2)/x^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.52228, size = 312, normalized size = 4.52 \begin{align*} \left [\frac{3 \, a \sqrt{b} x \log \left (\frac{a x - 2 \, \sqrt{b} \sqrt{x} \sqrt{\frac{a x + b}{x}} + 2 \, b}{x}\right ) + 2 \,{\left (2 \, a x - b\right )} \sqrt{x} \sqrt{\frac{a x + b}{x}}}{2 \, x}, \frac{3 \, a \sqrt{-b} x \arctan \left (\frac{\sqrt{-b} \sqrt{x} \sqrt{\frac{a x + b}{x}}}{b}\right ) +{\left (2 \, a x - b\right )} \sqrt{x} \sqrt{\frac{a x + b}{x}}}{x}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x)^(3/2)/x^(1/2),x, algorithm="fricas")

[Out]

[1/2*(3*a*sqrt(b)*x*log((a*x - 2*sqrt(b)*sqrt(x)*sqrt((a*x + b)/x) + 2*b)/x) + 2*(2*a*x - b)*sqrt(x)*sqrt((a*x
 + b)/x))/x, (3*a*sqrt(-b)*x*arctan(sqrt(-b)*sqrt(x)*sqrt((a*x + b)/x)/b) + (2*a*x - b)*sqrt(x)*sqrt((a*x + b)
/x))/x]

________________________________________________________________________________________

Sympy [A]  time = 10.5422, size = 92, normalized size = 1.33 \begin{align*} \frac{2 a^{\frac{3}{2}} \sqrt{x}}{\sqrt{1 + \frac{b}{a x}}} + \frac{\sqrt{a} b}{\sqrt{x} \sqrt{1 + \frac{b}{a x}}} - 3 a \sqrt{b} \operatorname{asinh}{\left (\frac{\sqrt{b}}{\sqrt{a} \sqrt{x}} \right )} - \frac{b^{2}}{\sqrt{a} x^{\frac{3}{2}} \sqrt{1 + \frac{b}{a x}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x)**(3/2)/x**(1/2),x)

[Out]

2*a**(3/2)*sqrt(x)/sqrt(1 + b/(a*x)) + sqrt(a)*b/(sqrt(x)*sqrt(1 + b/(a*x))) - 3*a*sqrt(b)*asinh(sqrt(b)/(sqrt
(a)*sqrt(x))) - b**2/(sqrt(a)*x**(3/2)*sqrt(1 + b/(a*x)))

________________________________________________________________________________________

Giac [A]  time = 1.25774, size = 68, normalized size = 0.99 \begin{align*}{\left (\frac{3 \, b \arctan \left (\frac{\sqrt{a x + b}}{\sqrt{-b}}\right )}{\sqrt{-b}} + 2 \, \sqrt{a x + b} - \frac{\sqrt{a x + b} b}{a x}\right )} a \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x)^(3/2)/x^(1/2),x, algorithm="giac")

[Out]

(3*b*arctan(sqrt(a*x + b)/sqrt(-b))/sqrt(-b) + 2*sqrt(a*x + b) - sqrt(a*x + b)*b/(a*x))*a